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Supplementary Information 
 

Supplementary Methods 
 

Single cell data preparation and sequencing 
 
Flow cytometry staining and single cell sorting 
For profiling of healthy DCs, peripheral blood mononuclear cells (PBMCs) were first isolated from 
fresh blood within 2hrs of collection, using Ficoll-Paque density gradient centrifugation as 
previously described1. Single-cell suspensions were stained per manufacturer recommendations 
with an antibody panel (Supplementary Table 14) designed to enrich for all known blood DC 
population for single cell sorting and single cell RNA-sequencing (scRNA-seq) profiling. PBMCs 
cell suspension was first immunostained with an antibody cocktail (CD3, CD19, CD56, CD14) to 
exclude other blood lineages (LIN), and with antibodies for known DC markers (HLA-DR, CD11C, 
CD1C, CD141, CD123; Supplementary Table 14). Since CD14–CD16+ cells within human LIN–
HLA-DR+ fraction has been classified as both monocytes and DCs, we only excluded CD14+ 
monocytes using a stringent gate. Briefly, DCs were defined as live, lineage (LIN: 
CD3,CD19,CD56)–CD14–HLA-DR+ cells. Conventional DCs (cDCs) were further defined as 
CD11C+ and 3 loose overlapping gates were drawn as an enrichment strategy to ensure a 
comprehensive and even sampling of both rare and common DC populations: CD11C+CD141+ 
(CD141; turquoise), CD11C+CD1C+ (CD1C; orange), CD11C+CD141-CD1C- (‘Double 
Negative’; blue). Plasmacytoid DCs (pDCs) were defined as CD11C-CD123+ (pDC; purple).  24 
single cells from four loosely gated populations (i.e. LIN–CD14–HLA-DR+CD11C–CD123+, LIN-
CD14–HLA-DR+CD11C+CD141+, LIN–CD14–HLA-DR+CD11C+CD1C+, LIN–CD14–HLA-
DR+CD11C+CD141–CD1C–) were sorted per 96-well plate, with each well containing 10ul of 
lysis buffer. A total of eight plates were analysed by single-cell RNA-sequencing. 
All LCL cell lines were cultured according to Coriell’s recommendation (medium: RPMI 1640, 2mM 
L-glutamine, 15% fetal bovine serum (all three from ThermoFisher Scientific)) in T25 tissue culture 
flask with 10-20 ml medium at 37°C under 5% carbon dioxide. Cells were split upon reaching cell 
density of approximately 300,000-400,000 viable cells/ml. All three lymphoblast cultures were split 
once prior to proceeding with single cell sorting.  Cells were washed with 1X PBS, pellet 
resuspended and stained with DAPI (Biolegend) for viability according to manufacturer’s 
recommendation.  
All single live cells (for both DCs and LCL cell lines) were sorted in 96-well full-skirted eppendorf 
plate chilled to 4°C, pre-prepared with 10µl TCL buffer (Qiagen) supplemented with 1% beta-
mercaptoethanol (lysis buffer) using BD FACS Fusion instrument. Single-cell lysates were sealed, 
vortexed, spun down at 300g at 4°C for 1 minute, immediately placed on dry ice and transferred 
for storage at -80°C.  
 
Single-cell RNA-seq: Reverse transcription 
Smart-Seq2 protocol was performed on single sorted cells as described2,3, with some 
modifications. 748 single DCs isolated from healthy Asian female individual, along with 96 single 
cells from GM19240, 48 single cells from GM19199, and 48 single cells from GM18518 were 
profiled as described below. Single-cells lysates were thawed on ice for 2 minutes, then 
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centrifuged at 2,500rpm at 4°C for 1 minute. Lysates were mixed with 22μL (2.2X) of Agencourt 
RNAClean XP SPRI beads (Beckman-Coulter) and incubated at room temperature for 10 min. 
The lysate plate was transferred to a magnet (DynaMag-96 Side Skirted Magnet, Life 
Technologies), the supernatant was removed, and the beads were washed three times in 100μL 
of 80% ethanol, with care being taken to avoid loss of beads during the washes. Ethanol was 
removed, and the beads were left to dry at room temperature for 10 min. Beads were resuspended 
in 4μL of Elution Mix (1μL 10μM RT primer [5’AGACGTGTGCTCTTCCGATCT(T)30VN-3’, IDT], 
1μL 10 mM dNTP [Agilent], 0.1μL SUPERase•In RNase-Inhibitor [20 U/μL, Life Technologies], 
and 1.9μL nuclease-free water). The samples were denatured at 72° C for 3 min and placed 
immediately on ice afterwards. 7μL of the Reverse Transcription Mix was subsequently added 
(2μL 5x RT buffer [Thermo Scientific], 2μL 5 M Betaine [Sigma-Aldrich], 0.9μL 100mM MgCl2 
[Sigma-Aldrich], 1μL 10μM TSO [5’- AGACGTGTGCTCTTCCGATCTNNNNNrGrGrG-3’, IDT], 
0.25 μL SUPERase•In RNase-Inhibitor [20U/μL, Life Technologies], 0.1μL Maxima H Minus 
Reverse Transcriptase [200U/μL, Thermo Scientific], and 0.75μL nuclease-free water). Every well 
was mixed with the resuspended beads. Reverse transcription was carried out by incubating the 
plate at 50°C for 90 min, followed by heat inactivation at 70°C for 10 min. 
 
Single-cell RNA-seq: PCR pre-amplification 
14μL of PCR Mix was added for a final PCR reaction volume of 25μL (0.5μL 10μM PCR primer 
[5’AGACGTGTGCTCTTCCGATCT-3’, IDT], 12.5μL 2x KAPA HiFi HotStart ReadyMix [KAPA 
Biosystems], 1μL nuclease-free water). The reaction was carried out with an initial incubation at 
98°C for 3 min, followed by 22 cycles at (98°C for 15 sec, 67°C for 20 sec, and 72°C for 6 min) 
and a final extension at 72°C for 5 min. PCR products were purified by mixing with 20μL (0.8X) 
Agencourt AMPureXP SPRI beads (Beckman-Coulter), followed by incubation for 6 minutes at 
room temperature. The plate was placed on a magnet for 6 minutes, the supernatant was 
removed, and the beads were washed twice with 100μL of 70% ethanol, with care being taken to 
avoid loss of beads during the washes. Ethanol was removed, and the beads were left to dry at 
room temperature for 10 min. The beads were resuspended in 20μL TE buffer (Teknova). The 
plate was placed on the magnet and supernatant containing the amplified cDNA was transferred 
to a new 96-well PCR plate. The cDNA SPRI clean-up was repeated a second time to remove all 
residual primer dimers following the same approach. The concentration of amplified cDNA was 
measured on the Synergy H1 Hybrid Microplate Reader (BioTek) using High-Sensitivity Qubit 
reagent (Life Technologies), and the size distribution of select wells was checked on a High-
Sensitivity Bioanalyzer Chip (Agilent). Expected quantification was around 0.5-2 ng/μL with size 
distribution sharply peaking around 2kb. 
 
Single-cell RNA-seq: Library preparation 
Library preparation was carried out using the Nextera XT DNA Sample Kit (Illumina) with custom 
indexing adapters, allowing up to 384 libraries to be simultaneously generated in a 384-well PCR 
plate (note that DCs were processed in 384-well plate while LCL were processed in 96-well plate 
format). For each library, the amplified cDNA was normalized to 0.15-0.20ng/μL. The 
tagmentation reaction consisted of 0.625μL of cDNA mixed with 1.25μL Tagment DNA Buffer and 
0.625μL Tagment DNA enzyme mix. The 2.5μL reaction was incubated at 55°C for 10 min and 
placed immediately on ice afterwards. The reaction was quenched with 0.625μL Neutralize 
Tagment Buffer and incubated at room temperature for 10 min. The libraries were amplified by 
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adding 1.875 μL Nextera PCR Master Mix, 0.625μL of 10μM i5 adapter (5’-
AATGATACGGCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTC-3’, IDT, where [i5] 
signifies the 8 bp i5 barcode sequence (see below for sequences), and 0.625μL of 10μM i7 
adapter 
(5’CAAGCAGAAGACGGCATACGAGAT[i7]GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC
TGGG-3’, IDT, where [i7] signifies the reverse-complement of the 8 bp i7 barcode sequence (see 
below for sequences). The PCR was carried out at an initial incubation at 72°C for 3 min, 95°C 
for 30 sec, followed by 12 cycles of (95°C for 10 sec, 55°C for 30 sec, 72°C for 1 min), and a final 
extension at 72°C for 5 min. Following PCR amplification, 2.5μL of each library were pooled in a 
2.0 mL microcentrifuge tube. The pool was mixed with 216μL (0.9X for 2.5ul of 96 cells pooled 
together (for LCL); 0.9X for 2.5ul of 384 cells pooled together (for DCs)) Agencourt AMPureXP 
SPRI beads (Beckman-Coulter) and incubated at room temperature for 5 min. The pool was 
placed on a magnet (DynaMag-2, Life Technologies) and incubated for 5 min. The supernatant 
was removed and the beads were washed twice in 1mL of 70% ethanol. The ethanol was removed 
and the beads left to dry at room temperature for 10 min. The beads were resuspended in 50μL 
of nuclease-free water. The tube was returned to the magnet, and the supernatant was transferred 
to a new 1.5mL microcentrifuge tube. The SPRI clean-up of the library was repeated a second 
time to remove all residual primer dimers. The concentration of the pooled libraries was measured 
using the High-Sensitivity DNA Qubit (Life Technologies), and the size distribution measured on 
a High-Sensitivity Bioanalyzer Chip (Agilent). Expected concentration of the pooled libraries was 
10-30 ng/μL with size distribution of 300-700bp. For the DCs, we created pools of 384 cells, while 
96 LCL samples were pooled at the time. We sequenced one library pool per lane as paired-end 
25 base reads on a HiSeq2500 (Illumina). 
 
Barcodes used for 96-well plate comprising GM19240: 
i5 barcodes: AGGATCTA, AGGTTATC, ATTCCTCT, CAACTCTC, CATGCTTA, CCAACATT, 
CTAACTCG, CTACCAGG, CTGCGGAT, GGTCCAGA, GTCTGATG, TCTGGCGA 
i7 barcodes: AGAACATT, AGTGTCTT, ATCCGACA, CAAGGCGA, GAATTGCT, GACCGAGA, 
GTCAAGTT, GTCTTAGT 
Barcodes used for 96-well plate comprising GM19199 and GM18518: 
i5 barcodes: AGGATCTA, AGGTTATC, ATTCCTCT, CAACTCTC, CATGCTTA, CCAACATT, 
CTAACTCG, CTACCAGG, CTGCGGAT, GGTCCAGA, GTCTGATG, TCTGGCGA 
i7 barcodes: AACATAAT, AAGCAACT, AGGATGTG, GACGCTAT, TCAACTGT, TCCATGCT, 
TCGCACCT, TTGATAAT 
Barcodes used for 384-well plate comprising single DCs: 
i5 barcodes: AAGTAGAG, ACACGATC, TGTTCCGA, CATGATCG, CGTTACCA, TCCTTGGT, 
AACGCATT, ACAGGTAT, AGGTAAGG, AACAATGG, ACTGTATC, AGGTCGCA, GGTCCAGA, 
CATGCTTA, AGGATCTA, TCTGGCGA, AGGTTATC, GTCTGATG, CCAACATT, CAACTCTC, 
ATTCCTCT, CTAACTCG, CTGCGGAT, CTACCAGG 
i7 barcodes: CTACCAGG, CATGCTTA, GCACATCT, TGCTCGAC, AGCAATTC, AGTTGCTT, 
CCAGTTAG, TTGAGCCT, ACCAACTG, GGTCCAGA, GTATAACA, TTCGCTGA, AACTTGAC, 
CACATCCT, TCGGAATG, AAGGATGT 
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Catalogue of X-inactivation status 
 
In order to compare results from the ASE and GTEx analyses with previous observations on genic 
XCI status we collated findings from two earlier studies4,5 that represent systematic expression-
based surveys into XCI each study cataloguing hundreds of X-linked genes and together the data 
spanning two tissue types. 
 
Data from Carrel&Willard 
Carrel and Willard4 presented the first comprehensive profile of XCI statuses for X-linked genes 
by comparing X-linked gene expression between human/rodent somatic cell hybrids containing 
either human Xa or Xi. In total they surveyed in total 624 X-chromosomal transcripts expressed 
in primary fibroblasts, including 471 transcripts annotated in NCBI build 34.3 and an additional 
153 transcripts (including full-length mRNAs and ESTs) not associated with annotated genes, in 
nine cell hybrids each containing a different human Xi. Given the old genome build utilized and 
the large number of unannotated transcripts surveyed in the Carrel and Willard study, the reported 
gene names or chromosomal positions were not utilized in mapping the XCI status data the to 
current reference, but the primer pair sequences designed to test the expression of the transcripts 
(primers given in Table S9 in Carrel and Willard) were used to find the genomic location and gene 
corresponding to each transcript. 
To perform in silico PCR against a comprehensive set of possible templates, we created three 
reference databases against which to align primers: 1) fully spliced transcripts, 2) unspliced 
transcripts, and 3) full genome. All were based on the hg19 genome and the Gencode v19 "Basic 
Set". Primer sequences were aligned using in-house software (unpublished), which retained any 
ungapped alignment with two or fewer mismatches, with at least one segment of five consecutive 
perfect matches, and with no mismatches in the five 3'-most primer bases. Results were screened 
for each primer pair, reporting any pairs of alignments (regardless of participating primers) 
consistent with the generation of an amplicon <=10kb in size. 
In order to find the gene from Gencode v19 annotations corresponding each primer pair, the 
alignments to the three possible templates were dissected by first prioritizing alignments to fully 
spliced transcripts, then alignments to the unspliced transcripts and finally including alignments 
to hg19 search and manually curating the results in case of multiple reported and/or conflicting 
alignments. 
Carrel and Willard also provided XCI statuses for 10 genes not surveyed in their study but reported 
in earlier studies. In the lack of primer sequence information, the transcripts were matched to 
Gencode v19 using reported transcript names. For 8 of these 10 genes the transcript name 
matched unambiguously gene name in the Gencode reference or a known alias, the two other 
transcripts (FLJ41633 and Hs.522028) were excluded. 
In total 553 transcripts primer pairs (87% of the original 634 transcripts, which includes the ten 
previously surveyed genes) were successfully matched to X-chromosomal Gencode v19 
reference mapping together to 470 unique chrX genes. 403 genes were represented by one 
primer sequence only and the corresponding Xi data was included as such, but for the 67 genes 
with alignments from multiple primers (53 genes with two aligned primers, 12 genes with three 
aligned primers, 2 genes (USP9X and JPX) with four aligned primers) data for Xi expression was 
averaged over the primers aligning to each gene. The level of Xi expression for individual primers 
within a gene were generally in good agreement (e.g. for APS1S2 all three transcripts AP1S2, 
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Hs.121592, Hs.431654 showed Xi expression in all nine cell lines) with the exception of SRPK3 
for which the two aligned transcripts (PLXNB3 and STK23) gave completely discordant results. 
The 470 X-chromosomal genes in the final list were split into three XCI status categories based 
on the level of Xi expression (i.e. here the number of cell lines expressing the gene from Xi) 

1. Gene was considered inactive if fewer than 25% of cell lines had detectable Xi expression: 
344 genes (73%) 

2. Gene was considered variable escape if 25-75% of cell lines had detectable Xi expression: 
51 genes (11%) 

3. Gene was considered escape more than 75% of cell lines had detectable Xi expression: 
75 genes (16%) 

 
Data from Cotton et al 
Cotton et al.5 surveyed XCI using allelic imbalance in clonal or near-clonal female LCL and 
fibroblast cell lines and provided XCI statuses for 508 genes (Additional file 7 / Table S5 in Cotton 
et al.) which were classified into three XCI status categories based on the level of expression from 
the suspected inactive allele (i.e. the allele with lower expression): escape (N=68), variable 
escape (N=146), and subject (N=294). To match this data with Gencode v19 annotations the 
reported gene name was compared with the Gencode “gene_name”, which yielded a unique 
match for 473 genes. For the remaining 35 genes for which the reported gene name did not match 
any of the gene names in the Gencode annotation file, the gene names were manually curated 
by searching for matching names from previous HGNC symbols or known aliases, and 
subsequently mapped to Gencode annotations using the updated gene names. After excluding 
CXorf59, which after updating the gene names matched to CXorf22 already present in the data 
(both genes classified as “escape”), and TMSL3 (classified as “escape” in Cotton et al), which 
similarly after updating the gene names matched to TMSB4XP8 in chromosome 22, XCI statuses 
were available for 506 X-chromosomal genes. 
 
Combining lists 
To create a joint set of XCI statuses the two XCI gene lists were compared using the three 
categories (escape, variable escape and inactive (i.e. subject)). 345 genes were available in both 
lists, and of these XCI statuses agreed between the studies for 224 genes (23 escape, 13 variable 
escape and 188 inactive genes). For the remaining 121 genes for which the XCI statuses failed 
to align the following rules were applied to determine the XCI status in the combined list: 1) A 
gene was considered “escape” if it was called escape in one study and variable in the other 
(N=26), 2) “variable escape” if classified as escape and inactive (N=19), and 3) “inactive” if 
classified as inactive in one study and variable escape in the other (N=76). For the 287 genes 
unique to either of the study (125 genes from Carrel and Willard, 161 genes from Cotton et al), 
the XCI status given in the original study was adopted. The final combined list of XCI statuses 
thus consisted of 631 X-chromosomal genes including 99 escape (16%), 101 variable escape 
(16%) and 431 inactive (68%) genes. 
 

Analysis of sex-biased expression 
 
Differential expression analyses were conducted to identify genes that are expressed at 
significantly different levels between male and female samples using the GTEx V6 tissues with 
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RNA-seq and genotype data available from more than 70 individuals after excluding samples 
flagged in QC by the GTEx Laboratory, Data Analysis, and Coordinating Center. Given the strong 
correlation of expression profiles in the different brain subregions6, only one brain region 
(BRNCTXA, Brain - Cortex) was included. Additionally, sex-specific tissues were excluded. 
Previous analyses point to breast tissue being an extreme outlier in terms of sex-biased 
expression6, likely due to differences in tissue composition between the sexes. As such excess 
sex bias can hamper the detection of the sex biases in transcription related to XCI, breast tissue 
was also excluded from the XCI analyses. Thus, in total 29 tissues were available for analysis 
(Extended Data Table 1). 
Prior differential expression analysis the expression data was limited to genes annotated as 
protein-coding or lncRNA genes in Gencode v19, further excluding all Y-chromosomal data as 
these genes are sex-specific by definition, resulting in total 27,334 genes. In addition, lowly-
expressed genes, i.e. genes with median expression across samples ≤0.1 RPKM or expressed 
in fewer than 10 individuals at >1 counts per million, were excluded leaving between 13,067 and 
16,157 genes per tissue for analysis (Extended Data Table 1). 
Differential expression analysis between male and female samples was conducted using the 
voom-limma pipeline7-9 available as an R package through Bioconductor 
(https://bioconductor.org/packages/release/bioc/html/limma.html): Gene-level read counts were 
first pre-processed using the voom function to stabilize the variance in the data and thereby to 
allow for the application of normal-based methods to RNA-seq data. Linear model was fitted using 
the log-transformed read counts and the precision weights from voom and differential expression 
analysis was conducted applying the lmFit and eBayes limma functions. 
To remove technical and other unwanted variation, we adjusted the analyses for the following 
covariates: Age, three principal components inferred from genotype data using EIGENSTRAT10, 
sample ischemic time, and surrogate variables11,12 built using the sva R package13 were used as 
continuous covariates and the cause of death classified into five categories based on the 4-point 
Hardy scale (samples where cause of death information was missing were categorized 
separately) as a categorical covariate. Surrogate variables were built separately for each tissue 
using age, principal components, ischemic time and cause of death as adjustment variables and 
sex as the variable of interest, and allowing sva to determine the number of latent factors that 
need to be estimated. 
To control the false discovery rate (FDR), we used the qvalue R package to obtain q-values 
applying the adjustment separately for the differential expression results from each tissue. The 
null hypothesis was rejected for tests with q-values below 0.01. 
 

Chromatin state analysis 
 
To study the relationship between chromatin states and XCI, we used chromatin state calls from 
the Roadmap Epigenomics Consortium14. Specifically, we used the chromatin state annotations 
from the core 15-state model, publicly available at 
http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state. We followed 
our previously published method15 to calculate the corrected percentage of each gene body 
assigned to each chromatin state. Briefly, for each gene and epigenome from the Roadmap 
Epigenomics Consortium, we calculated the percent of the gene body covered by each of the 15 
chromatin states. Then, we corrected for covariates of sample type, sample state, and processing 

https://bioconductor.org/packages/release/bioc/html/limma.html
http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state
http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state
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center by calculating the deviance residual using logistic regression. After these pre-processing 
steps that were based on all 19,935 genes and 127 epigenomes, we filtered down to the 399 
inactive and 86 escape genes on the X chromosome. Similarly, we filtered down to 38 female 
epigenomes and 51 male epigenomes, as described previously15. 
To compare the chromatin state profiles of the escape and inactive genes in female samples, we 
used the one-sided Wilcoxon rank sum test. Specifically, for each chromatin state, we averaged 
the chromatin state coverage across the 38 female samples for each gene. Then, we compared 
that average chromatin state coverage for all active genes to the average chromatin state 
coverage for all inactive genes. We performed both one-sided tests, to test for enrichment in 
escape genes, as well as enrichment in inactive genes. 
Next, we performed simulations to account for any chromatin state biases, such as the fact that 
the escape and inactive genes are all from the X chromosome. Specifically, we generated 10,000 
randomized simulations where we randomly shuffled the “escape” or “inactive” labels on the 
combined set of 485 genes, while retaining the sizes of each gene set. For each of these 
simulated “escape” and “inactive” gene sets, we calculated both Wilcoxon rank sum p-values as 
described above. 
Then, we calculated a permutation “p-value” based on these 10,000 random simulations. 
Specifically, we calculated the percentile ranking of the p-value for our real data, compared to the 
simulated p-values. Formally: 
pperm = (k+1)/(N+1) 
where k is number of simulations (out of 10,000) where psim <= preal, and N is the number of 
simulations (10,000). 
Finally, we used Bonferroni multiple hypothesis correction to correct for our 30 tests, one for each 
of 15 chromatin states, and both possible test directions. In other words, we considered a pperm 
<0.00166 to be significant, as this new threshold was based on a cutoff 0.05/30. 
 

Allele-specific expression 
 
For ASE analysis the allele counts for biallelic heterozygous variants were retrieved from RNA-
seq data using GATK ASEReadCounter (v.3.6)16.  Heterozygous variants that passed VQSR 
filtering were first extracted for each sample from WES or WGS VCFs using GATK SelectVariants. 
The analysis was restricted to biallelic SNPs due to known issues in mapping bias in RNA-seq 
against indels16. Sample-specific VCFs and RNA-seq BAMs were inputted to ASEReadCounter 
requiring minimum base quality of 13 in the RNA-seq data (scRNA-seq samples, GTEX-UPIC) or 
requiring coverage in the RNA-seq data of each variant to be at least 10 reads, with a minimum 
base quality of 10 and counting only reads with unique mapping quality (MQ = 60) (clinical muscle 
samples). 
For downstream processing of the scRNA-seq and GTEX-UPIC ASE data, we applied further 
filters to the data to focus on exonic variation only and to conservatively remove potentially 
spurious sites: we excluded all sites that 1) were not exonic, 2) had non-unique 25bp (for scRNA-
seq samples) or 75bp (for GTEX-UPIC) mappability in the Human Female hg19 mappability track 
downloaded from http://www.broadinstitute.org/~anshul/projects/umap/, 3) had allele balance < 
20, genotype quality < 40 or depth < 20 in the genotype data, 4) were not unique to protein-coding 
or lncRNA genes, with the exception of sites mapping to the XIST exon overlapping with TSIX, 
which were retained and considered unique to XIST, 5) had another SNP within 5bp potentially 

http://www.broadinstitute.org/~anshul/projects/umap/
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indicating more complex pattern of variation at that site, or 6) in case of two SNPs within 25bp (or 
75bp for GTEX-UPIC) of each other we only kept one to avoid one read spanning two ASE sites. 
For GTEX-UPIC we further limited the X-chromosomal ASE data in case of multiple ASE sites to 
only one site per gene, by selecting the site with coverage >7 reads in the largest number of 
tissues, to have equal representation from each gene for downstream analyses. Finally, after an 
initial analysis of the X-chromosomal ASE data we subjected 22 of the sites to manual 
investigation due to these providing potentially spurious results, i.e., results in conflict with 
previous surveys into XCI, which resulted in the exclusion of further five ASE sites.  
 

Phasing scRNA-seq data 
 
We assigned each cell to either of two cell populations distinguished by the parental X-
chromosome designated for inactivation utilizing genotype phasing. For the YRI samples, where 
parental genotype data was available, the assignment to the two parental cell populations was 
unambiguous for all cells where X-chromosomal sites outside PAR1 or frequently biallelic sites 
were expressed. For 24A no parental genotype data was available, and hence we utilized the 
correlation structure of the expressed X-chromosomal alleles across the 948 cells to infer the two 
parental haplotypes utilizing the fact that in individual cells the expressed alleles at the chrX sites 
subject to full inactivation (i.e. the majority chrX ASE sites), are from the X chromosome active in 
each cell. Limitation of this approach is, however, that, unlike with the YRI trios, the parental origin 
of the haplotypes remains ambiguous. For this calculation we excluded all PAR1 sites and all 
additional sites that were frequently biallelic, to minimize the contribution of escape genes to the 
phase estimation. 
Briefly, we 1) first estimated the relative phase of each ASE SNP pair by comparing the alleles 
detected at all cells where both sites were observed in the ASE analysis, which, given that not all 
SNP pairs could be compared, generated a sparse square matrix of concordances, and 2) then 
sequentially aggregated the haplotype phase information across the rows of the concordance 
matrix starting from the ASE SNP with the largest overall evidence for an accurate phase 
(estimated as the sum of absolute concordances across the ASE sites). 3) To estimate the 
accuracy of the above phasing approach (i.e. steps 1 and 2) we applied the approach 100 times 
using sets of 100 cells sampled from the full set of scRNA-seq ASE data. 4) To get the final 
estimated haplotype phase, we averaged the site-specific estimates from these 100 runs, which 
thus yielded a vector of probabilities of the reference allele at each site belonging to the same 
parental chromosome. 
The alleles detected at each cell were then compared with this haplotype phase to determine 
which haplotype was active in each cell. The cell was assigned to the haplotype for which the 
sum of the number of reads for each allele weighted by the probability of the allele belonging to a 
given haplotype was greater.  
After assigning each informative cell to either of the parental cell populations, the reference and 
alternate allele reads for each ASE site were mapped to active and inactive allele reads within 
each sample using the actual or inferred parental haplotypes. At sites where phase was 
unavailable (e.g. PAR1 sites for 24A that were not used for phasing or sites with ambiguous phase 
for YRI samples) the allele with the larger number of reads across cells, or in a case where cells 
from both cell populations express alleles at such site the allele combination (ref in population 1 
+ alt in population 2, or vice versa) with the larger number of reads, was assumed to be on the 
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active chromosome. As an exception, for 24A the expressed alleles at XIST were assigned to the 
inactive chromosome, in line with the pattern observed for YRI samples where parental genotype 
data confirms exclusive expression of XIST from Xi. The data was first combined per variant by 
taking the sum of active and inactive counts separately across cells, and further similarly 
combined per gene, if multiple SNPs per gene were available. 
 

Manual curation of heterozygous variants from ASE analyses 
 
Twenty-two heterozygous variants assessed in chrX ASE analysis were subjected to manual 
curation due to providing results in the XCI analysis that were in conflict with previous assignment 
of the underlying gene to be subject to full XCI. For each sample, BWA-aligned germline bams 
were viewed in IGV using WGS data if available, otherwise exome capture data were used. The 
locally realigned bams produced by HaplotypeCaller were also used, though the evidence from 
these was typically in agreement with the pileup from the BWA-aligned bams. The presence of a 
number of characteristics called into question the confidence of the variant read alignments and 
thus the variant itself. Allele balance that deviated significantly from 50:50 was considered suspect 
and often coincided with the existence of homology between the reference sequence in the region 
surrounding the variant and another area of the genome, as ascertained using the UCSC browser 
self-chain track and/or BLAT alignment of variant reads from within IGV. Other sequence-based 
annotations added to the VCF by HaplotypeCaller were also evaluated in the interests of 
examining other signatures of ambiguous mapping. Two variants were considered suspect based 
on low root-mean-squared mapping quality, or inferior mapping quality of reads supporting the 
alternate allele compared with those supporting the reference.  In one case, a variant was also 
excluded from consideration because the base qualities of the alternate bases were significantly 
worse than those of the reference bases. The phasing of nearby variants was also considered. If 
phased variants occurred in the DNA sequencing data that were not assessed in the ASE 
analysis, those variants were considered suspect. 
Further two SNPs that passed manual checks were excluded due to potentially spurious patterns 
in scRNA-seq as both lacked reference allele reads. For X:24578551 the expressed allele was 
assigned to the inactive paternal chromosome, and for X:48932564 all cells, independent of the 
parental X chromosome inactivated, expressed the alternative allele of the variant. While these 
can nevertheless represent real signals of incomplete inactivation such patterns can also be due 
to alignment or phasing artifacts and therefore were conservatively excluded. 
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Supplementary Tables 
 
Supplementary Table 1. XCI status list compiled from previous studies. (provided separately) 
Supplementary Table 2. Sex bias results for chrX from the GTEx analysis. (provided 
separately) 
Supplementary Table 3. Nine genes that have not conclusively been described as escape 
genes in previous studies but follow a similar expression profile to escape genes in the GTEx 
sex bias analysis. (provided separately) 
Supplementary Table 4: Variant QC for ASE. (provided separately) 
Supplementary Table 5. X-chromosomal ASE results across 16 tissues in GTEX-UPIC. 
(provided separately) 
Supplementary Table 6. Posterior probabilities for different ASE states for each X-
chromosomal ASE site expressed in at least two tissues. (provided separately) 
Supplementary Table 7. Association between posterior probabilities for different ASE states 
and XCI categories. Associations were assessed using generalized linear regression. (provided 
separately) 
Supplementary Table 8. All scRNA-seq results for chrX. The data is summarized by gene for 
each sample. (provided separately) 
Supplementary Table 9. Summary of observed XCI status in genes assessed in scRNA-seq 
samples. (provided separately) 
Supplementary Table 10. Concordance of XCI status assignments from scRNA-seq with 
previous assignments. (provided separately) 
Supplementary Table 11. New escape genes from scRNA-seq. Genes previously assigned as 
inactive that show significant Xi expression (see Methods for details) in at least one scRNA-seq 
sample are considered new candidate escape genes. (provided separately) 
Supplementary Table 12. Xa and Xi expression between two X-chromosomal haplotypes in 
single cells. The difference in the level of Xi expression between the two haplotypes was 
compared in samples where both cell populations were present, i.e. XCI was not fully skewed, 
and at genes where both expression from Xi across all cells was significantly greater than 
baseline (binomial test P-value < 0.05, see Methods) and both haplotypes had coverage ≥8 
reads. Significance between the expression from two haplotypes was assessed using 2-sample 
test for equality of proportions. (provided separately) 
Supplementary Table 13. A summary of XCI analyses across the three data sets. Seven new 
escape gene candidates supported by evidence from at least two of the analyses are 
highlighted in orange. The potential characteristics supporting escape are 1) significant female 
bias in expression in GTEx population-level analysis, 2) posterior probability <0.5 for full 
inactivation across assessed tissues in chrX ASE data from GTEX-UPIC, and 3) significant Xi 
expression from at least one single cell sample. (provided separately) 
Supplementary Table 14. List of antibodies used to perform single DC sorting in 96-well plates. 
(provided separately) 
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Supplementary Discussion 

 

Factors potentially contributing to the heterogeneity in sex bias across tissues for 
escape genes 
 
In the analysis of sex bias across GTEx tissues we identified a handful of established escape 
genes that showed uncharacteristically heterogeneous patterns of male-female expression 
differences, e.g. nonPAR genes KAL1 and ACE2 are both significantly male-biased in several 
tissues (Fig. 2a). Such a pattern can arise due to either subtler or more tissue-specific escape 
from XCI, yet we also find a few potential alternative explanations. Hormone-dependent gene 
regulation can hamper the detection of the expected female bias in escape gene expression. For 
instance, the predominant male-biased expression of ACE2 is in line with the demonstrated higher 
ACE2 activity in males partially driven by sex steroids17. We also note that a cluster of escape 
genes with less consistent sex bias profiles resides in the chromosomal region telomeric from the 
X-inactivation center, in the evolutionarily older region of the chromosome18 (Fig. 2a and Extended 
Data Figure 5). 
 

Magnitude of Xi expression along the chromosome 
 
We find that level of expression from Xi varies with the chromosomal position of escape genes, 
as established previously4,5: mean Xi to Xa expression ratio peaks at PAR1 and nearby nonPAR 
regions, and then diminishes along the chromosome (Pearson r=-0.50, P=4.20E-03), consistent 
with the relatively subtle and heterogeneous sex bias in Xq compared to Xp (Fig. 2a). In nonPAR, 
the estimated level of Xi expression predicts the level of female bias in expression (Pearson 
r=0.78, P=2.62E-07), although, on average, in the population sample the magnitude of male-
female expression difference at escape genes is slightly diluted from the allelic expression 
estimates for Xi expression (e.g. median in Xp 14% vs 21%). 
Assessment of relative expression of the X and Y chromosome haplotypes of eleven PAR1 genes 
in skeletal muscle samples from eight males, leveraging a combination of RNA-seq and exome 
sequencing of trios (Methods), finds no evidence for systematic up or downregulation of Y 
chromosome expression (Extended Data Figure 8), thus indicating that the consistent male bias 
in PAR1 gene expression observed in the population-level analysis (Fig. 2a, female expression 
on average at 88% of male expression) is due to incomplete escape in PAR1 in females.  
 

Implications of incomplete XCI for sex differences in health and disease 
 
In our analyses of the GTEx data, we show that the incompleteness of XCI leads to expression 
differences between sexes for more than 60 genes, with sex bias often detected in multiple tissues 
and likely being present throughout life. As such, given that chances in gene regulation 
differences are key drivers of phenotypic differences, we suggest that incomplete XCI may well 
contribute to the widespread sex differences in health and disease.  
Due to the unique inheritance pattern and the enrichment in haploinsufficient genes19, there is an 
abundance of rare diseases attributable to X-chromosomal mutations. These predominantly affect 
males, yet the penetrance in females can be modulated by the skewness and incompleteness of 
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XCI20,21. Interestingly, several X-Y homologous genes have been implicated in severe diseases 
and syndromes, including established disease genes, such as DDX3X mutations in which cause 
intellectual disability22 and KDM6A associated with Kabuki syndrome (OMIM 300128), both of 
which show considerable male bias in expression after accounting for the expression from the Y 
chromosome counterpart in the sex bias analysis. 
Given the longstanding exclusion of the X chromosome from genome-wide association studies23, 
the roles of X-chromosomal genes in complex traits, however, remain poorly understood. Despite 
this, X chromosome loci have been shown to contribute to several common phenotypes24-26 and 
incompletely inactivated genes to contribute to sex differences24-26. 
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Supplementary Note 
 

Skewness of XCI in GTEx samples 
 
Normal female tissue samples consist of two X-chromosomal cell populations, one where the 
paternal and one where the maternal X-chromosome is designated for inactivation. In the majority 
of cases the ratio of the two cell populations, i.e. skew in XCI, has been shown to mildly deviate 
from equal inactivation (50:50 ratio), yet considerable skews in XCI (>75% cells inactivate the 
same chromosome, “skewed XCI”) are relatively rare in population27. As such bulk tissue is rarely 
suitable for assessments of genic XCI status through allelic expression, as most heterozygous 
sites appear biallelically expressed due to the presence of the two active cell populations in the 
sample. 
In order to characterize the patterns of XCI skew in GTEx female samples and to identify 
individuals with very skewed XCI (>95% of cells with the same inactive chromosome) therefore 
potentially informative for surveys into XCI, we utilized allelic expression in chrX measured via 
RNA-seq to get a measure for the ratio of the two cell populations in each female tissue sample. 
We hypothesized that allelic expression at a heterozygous site in an X-chromosomal gene subject 
to full X-inactivation is reflective of the ratio of the two parental cell populations in the tissue 
sample. The relative expression from each allele can, however, be modulated by regulatory 
variation. To account for the potential noise in allelic expression due to regulatory and other 
variation at individual genes, we used median allelic expression across all expressed (>=8 reads) 
nonPAR chrX sites as a proxy for the skew in XCI. Given that the majority of chrX genes are 
inactivated, median allelic expression should not be impacted by allelic expression from escape 
genes, however PAR1 data was excluded as these genes all escape from X-inactivation. 
We used the multi-tissue GTEx RNA-seq data and and genotypes from Infinium ExomeChip to 
retrieve allelic read counts over heterozygous SNPs identified from genetic data. For genotyping, 
RNA-seq, and allele-specific expression details see28. All genotype and RNA-seq data utilized in 
this analysis is available in dbGap under accession phs000424.v3.p1. The X-chromosomal ASE 
data was summarized for each sample by taking the median allelic expression (i.e. |0.5 – 
(reference reads/total reads)|) for all nonPAR heterozygous SNPs covered by at least eight reads 
requiring at least three ASE sites qualifying these criteria for confident measure for XCI skew. 
Together XCI skew was estimated for 64 GTEx female donors and 42 unique tissue types. 
The results grouped by tissue type and by individual are shown in Extended Data Figure 1. As 
established previously5,29, most LCL samples demonstrate very skewed XCI due to their 
increased clonality, yet no other tissue type shows similar strong skewing, but rather most other 
samples fall within the normal range of skew (25-50% of cells with the same inactive 
chromosome), thus being unsuited for surveys of XCI via allelic expression. The per individual 
analysis, however, identified a highly unusual pattern in one of the female donors (ID: GTEX-
UPIC), where the individual appears to have completely skewed XCI (i.e. median nonPAR allelic 
expression equal to zero) in all five tissue samples available in the GTEx V3 data. Further 
analyses showed that the very skewed XCI extends to all 16 tissues available in the later V6 data 
release and found no X-chromosomal abnormality in genotype data in this individual that could 
explain such a pattern. This unique sample was chosen for further analysis to interrogate sharing 
of XCI across tissues. 
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